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ABSTRACT
Carefully selecting the right collection datastructure can signifi-
cantly improve the performance of a Java program. Unfortunately,
the performance impact of a certain collection selection can be hard
to estimate. To assist developers there are tools that recommend
collections to use based on static and/or dynamic information about
a program. The majority of existing collection selection tools for
Java (e.g., CoCo, CollectionSwitch) pick their selections dynami-
cally, which means that they must trade off sophistication in their
selection algorithm against its run time overhead. For static col-
lection selection, the Brainy tool has demonstrated that complex,
machine-dependent models can produce substantial performance
improvements, albeit only for C++ so far.

In this paper, we port Brainy from C++ to Java, and evaluate its
effectiveness for 5 benchmarks from the DaCapo benchmark suite.
We compare it against the original program, but also to a variant of
a brute-force approach to collection selection, which serves as our
ground truth for optimal performance. Our results show that in four
benchmarks out of five, our ground truth and the original program
are similar. In one case, the ground truth shows an optimization
yielding 20% speedup was available, but our port did not find this
substantial optimization. We find that the port is more efficient
but less effective than the ground truth, can easily adapt to new
hardware architectures, and incorporate new datastructures with
at most a few hours of human effort. We detail challenges that we
encountered porting the Brainy approach to Java, and list a number
of insights and directions for future research.
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1 INTRODUCTION
Most recent programming languages include a collection frame-
work as part of their standard library (or runtime). For example,
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Java, C#, Python and Ruby all provide a collection framework. Col-
lections typically implement an Abstract Data Type (ADT), which
defines operations that the collection supports, and their semantics.
In Java, the List, Map, and Set interfaces describe the associated
ADTs, which are implemented in several classes. Collections that
implement the same ADT are largely interchangeable.

However, even when collections are semantically interchange-
able, their respective performance characteristics may vary. Liu
and Rus [13] found that changing a single collection initialization
parameter yielded a 17% run time reduction, while Jung et al. [9] re-
duced one benchmark’s run time by 77% by swapping one collection
datastructure for another.

The performance impact of collection selection, i.e., the choice
between equivalent collection datastructures, depends on a complex
interplay of factors. Developers may be aware of some factors, e.g.,
data structure size, but others (e.g., cache size) can be hard to grasp.

There are other factors beyond collection type and usage that
may influence execution time. Jung et al. [9] showed that CPU archi-
tecture had a strong influence on running time for C++ programs,
so that the optimal collection(s) for a task would be different for
different machines. For Java programs, two additional factors could
matter (in blue): the JVM implementation [16], and Just-In-Time
(JIT) compilation and its “JVM warmup” [4] effect in Java.

Several existing approaches assist developers with collection
selection, either statically, i.e., before execution [1, 9, 20], or dynam-
ically, i.e., at run time [5, 26]. Tools that make static replacements
can take as much time and gather as much data as needed to select
which collection to instantiate. Dynamic approaches pay for profil-
ing and decision-making at run time, so they must rely on simpler
models and limited data. In exchange, they gain the ability to alter
the collection selection during run time.

Existing approaches for Java use different models of collection
performance for decision-making. CoCo [26] and Chameleon [20]
use expert specifications as their models, and observe collection us-
age (e.g., method call counts) to take decisions. CollectionSwitch [5]
uses micro-benchmarking to learn the cost of each operation in re-
lation to collection size. However, if CPU architecture has a strong
influence on which collection is best, as Jung et al. report [9], our
tools should take the environment into account when making sug-
gestions. Their Brainy approach is then promising, as it builds a
model that factors in CPU behavior. However, the Brainy approach
has so far only been realized for C++, and not for any languages
whose implementations utilize just-in-time compilation, like Java.

In this paper, we report on our experience of using the Brainy
approach for Java, focusing on the following research questions:

RQ1 What are the technical challenges in porting the Brainy ap-
proach to Java?
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Manual Automatic Other
Static Chameleon [20] Brainy [9] Artemis/NSGA-II [1]

Dynamic CoCo [26] CollectionSwitch [5]
Table 1: Overview of collection selection assistance tools.

RQ2 How effective is the Brainy approach at optimizing Java
programs?

RQ3 How adaptive is the Brainy approach when applied to Java?
RQ4 What obstacles impair the effectiveness of the Brainy ap-

proach in Java?
To find answers to these questions, we have ported the Brainy
approach to Java in an implementation we call Brainy4J. In this
work, we have attempted to replicate the Brainy approach as far
as possible, based on details available in the original paper [9] and
from correspondence with the authors. In some cases we had to fill
in missing details ourselves, or to make larger adjustments to adapt
the approach to the needs of the Java environment.

We evaluate our system against a ground truth constructed from
a brute-force selection of collections for 5 benchmarks from the
DaCapo benchmark suite [3]. We find Brainy4J to be less effec-
tive at selecting collections than our ground truth. Brainy4J runs
faster, but misses the most impactful optimization available. We
note weaknesses in the Brainy approach that manifest in our set-
ting, we highlight key challenges to overcoming them. We find
Brainy4J highly adaptive to different environments, but find no
strong evidence for the significance of CPU architecture details to
Java collection selection.

The contributions of this paper are the following:
• Brainy4J, a port of the Brainy approach to Java.
• an evaluation of Brainy4J’s effectiveness and adaptability.
• a list of challenges found when porting Brainy. along with

an exploration of the design space for overcoming them.

2 RELATED WORK
Table 1 lists the most closely related tools. covering static collec-
tion replacement [1, 9, 20] and dynamic replacement via adaptive
collections [5, 15, 26]. We further divide approaches between those
that use hand-written performance models (“Manual”), and those
that construct models via machine learning (“Automatic”).

Static collection replacement. Shacham et al.’s 2009 Chameleon
system [20] uses traces, heap information, and hand-written rules
to select the collections to use. Basios et al’s 2018 Artemis [1]
uses a genetic algorithm to optimize the program directly, without
a cost model. Instead, it explores possible variants by executing
them in the cloud. Our work is a direct port of Jung et al.’s 2011
Brainy [9], which uses a machine learning model instead of hand-
written heuristics (as in Chameleon) and running purely locally,
with knowledge about the underlying architecture (unlike Artemis).

Adaptive collections. Xu [26] and Österlund et al. [15] present
collections that switch implementations adaptively, based on usage.
Österlund et al. present lists that switch between array and hashmap
representations based on a state machine that tracks method calls.
CoCo [26] minimizes copies by moving elements between different

Benchmark Generator

Synthetic benchmarks
(Plan + Collection)

Time measurement
seed selection

Feature
ExtractionSelected benchmarks

Hardware Features

Model training
Labels (best collection)

Neural Network
Figure 1: Overview of Brainy’s classifier training process

collections on demand. Costa et al.’s 2018 CollectionSwitch [5]
builds on these tools to introduce smart constructors that select
which type to instantiate. Similarly to Brainy, CollectionSwitch
learns the relationship between the size of a data structure and its
cost of operations via regression on micro-benchmarks. However,
Brainy uses more complex models and suggests static changes.

Related approaches. The notion of re-usable software compo-
nents dates to the early days of software engineering, with McIlroy
proposing “catalogues of standard parts” that software engineers
should be able to choose from [14]. This intuition sees compo-
nents as units of functionality that should adhere to well-defined
interfaces, possibly specified in a suitable formalism [7, 11, 17, 23].
For object-oriented programming, this idea matches Liskov’s be-
havioural contracts for substitutability in subtype interfaces [12].
We here exploit that parts of the Java Collections Framework follow
such contracts, but note that some aspects of their semantics are
left to implementers, limiting substitutability.

At the language level, SETL [19] entirely hides the choice of data
structure from developers to allow its compiler to effect speedups.
For model-based or program refinement techniques [2, 10, 21] and
for domain-specific languages like Spiral [18], prior research has
shown the effectiveness of data structures selection, up to library-
level auto-tuning [22]. While some modern dynamically typed
languages similarly hide data structure details from their users
and could use similar techniques, statically typed languages like
Java or C++ require users to utilize explicit abstractions, such as
the factory APIs exposed by CollectionSwitch.

3 BRAINY
We briefly review the most salient aspects of Brainy’s approach
to data structure selection before we discuss our adaptations (Sec-
tion 4). Brainy tries to answer the question: “what data-structure
should I use, when the original data-structure behaves a certain
way?” [9]. Its premise is that developers provide Brainy with a
program and source location, and it suggests the collection to use.

Brainy’s centerpiece is a machine-learned classifier that takes
information about (a) the current data structure, (b) collection us-
age, and (c) the CPU architecture, and proposes a replacement
datastructure. To train this classifier (illustrated in Figure 1), Brainy
collects training data from synthetic micro-benchmarks specific to
each ADT. Brainy runs each micro-benchmark with each known
datastructure for the ADT, both to determine execution time and to
extract collection usage features. To optimize a given target program,
Brainy extracts the same types of features from one or more target
program executions and asks the classifier for a recommendation.
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3.1 Building Brainy’s training set
For each ADT, Brainy generates randomized micro-benchmarks
to examine how different datastructures behave in different use
cases. We identify each micro-benchmark with this ADT and with
a random seed, from which Brainy synthesizes a plan — a sequence
of operations to execute on one datastructure instance. Brainy fixes
the length of all plans at 1000 methods. It first assigns a random
weight to each ADT operation, then selects the 1000 operations one
at a time with a probability proportional to their weight.

Phase I: Timemeasurements and benchmark selection. For
each datastructure that implements the ADT, Brainy then measures
how long the micro-benchmark takes to run, i.e., how well the
datastructure performs for this specific plan. If one datastructure
wins the micro-benchmark, meaning that it is at least 5% faster than
all other datastructures, Brainy includes this micro-benchmark in
its training set after labeling it with the winner. Brainy ensures
that all datastructures win equally often: once Brainy has collected
a fixed number of wins for a given datastructure (1000 in their
evaluation), it discards any additional plans in which the same
datastructure wins. We call this process benchmark selection. We
hypothesize that the authors’ motivation behind this step is to avoid
the class imbalance problem [8], which in our context means that an
imbalance in the number of wins will disproportionately penalize
datastructures with fewer wins.

Phase II: Obtaining collection usage features. After Phase I
has computed a set of benchmarks with clear “winner” datastruc-
tures, Phase II revisits each benchmark to extract collection usage
features, i.e., information that Brainy can use to categorize how the
micro-benchmark is using the datastructure. Brainy instruments
the plan and re-executes it with each datastructure to collect fea-
tures from four different categories: hardware performance counter
features, specifically branch prediction and L1 cache miss rates, one
memory size feature, the ratio between each collection element and
the cache block size, operation counts, for each ADT operation, and
three cost features, as we describe below.

Cost Features. Intuitively, choosing the right data-structure re-
quires knowing what operations we want to execute, and how
much time these cost: If we mainly insert elements but rarely read,
we will likely prefer a datastructure for which insertion is cheap.
Brainy therefore gathers the cost associated with insertions, dele-
tions, searches (look-ups and iterations) during the benchmark. The
authors measure this cost as follows: insertion and deletion (number
of data elements moved forwards or backwards by the insertion),
and search (number of data elements accessed before finding the
element of interest).

Training data. At the end of Phase II, Brainy has collected training
data in the form of micro-benchmarks, annotated with the winning
data structure, and collection usage features for each datastructure.
Brainy trains a family of artificial neural networks1 with this data:
one network per datastructure to replace.

3.2 Classification
For classification, Brainy obtains collection usage features and
records the datastructure that it should replace, and queries the
appropriate classifier. For example, if the user wants to replace
1We were unable to obtain details about the structure or size of these networks.

a hash_set, Brainy will feed the features into a classifier special-
ized for hash_set replacement, the set ADT, and the user’s current
machine.

3.3 Evaluation of Brainy
The authors apply Brainy to nine datastructures (vector, list, deque,
set, AVL_set, hash_set, map, AVL_map, and hash_map) and six
ADTs (set, map, list, vector, and order-oblivious list and vector),
and train it on two distinct Intel microarchitectures.

To test the training accuracy of Brainy, the authors generate
a test set of 1000 benchmarks, one for each datastructure. They
report an accuracy between 80% and 90% for the 2006 Intel Core
microarchitecture, and an accuracy between 70% and 80% on the
2008 Intel Bonnell microarchitecture (Intel Atom).

The authors also compare Brainy’s suggestions and their effect
on four benchmark programs, each of them on three different work-
loads. They report that on average, Brainy reduces execution time
by 27% on the Core microarchitecture, and by 33% on the Bon-
nell (Atom) microarchitecture. All benchmarks report at least 10%
execution time reduction, with a maximum of 77% in one case.

4 PORTING BRAINY TO JAVA: BRAINY4J
In this section we address RQ1 by describing our strategy for im-
plementing Brainy4J (Brainy for Java) and highlighting our design
decisions in this process.

4.1 Selection of Collections
Following prior work [5, 20, 26], we selected collections from the
Java Collection Framework’s List, Set, and Map ADTs. After initial
experiments, we concluded that we could not reproduce several
of the optimizations from prior work purely with datastructures
from the standard library, and added data structures from Collec-
tionSwitch [5].

For lists, we selected ArrayList, LinkedList and HashAr-
rayList from CollectionSwitch. For sets, we selected HashSet,
TreeSet, and ArraySet from FastUtil [25], as used in Collection-
Switch (Chameleon [20] also reports using an ArraySet). For maps,
we selected HashMap, TreeMap and ArrayMap [25].

These data structures are both the ones we consider as targets of
a transformation, and as sources, meaning that we did not explore
transformations e.g. from custom user-defined map implementa-
tions to standard library map datastructures. We additionally con-
figured LinkedHashSet and LinkedHashMap as sources (only).

4.2 Datastructure Adaptability
We automatically replace data structures at the Java bytecode level.
To enable replacement, we introduce suitable shared super-interfaces
for all affected collections as needed, e.g. LinkedListInterface.
Since two data structures may not offer the same different APIs even
if they both implement the same ADT, we also added “universal”
adapter subclasses for each data structure that inherit the shared
super-interfaces and offer suitable adapter functionality. For exam-
ple, LinkedList exposes a method pop() that ArrayList does not
offer. The adapter subclass ArrayListUniversal, which inherits
from ArrayList and implements LikedListInterface, implements
this feature. Other methods we expose through default methods in
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the super-interfaces. Our measurements show that these changes
by themselves have no significant effect on execution time.

4.3 Feature Selection and Extraction
In their original study, Jung et al. selected one set of features for
each collection using genetic algorithms. In our case, we used the
features that they reported as being important for all collections.

To gather features we need to instrument benchmarks. We use
our adaptability transformations as the foundation for our trac-
ing framework. For each adapter interface, we synthesize wrapper
classes that obtain call counts for each method, and the same hard-
ware performance features used in Brainy (via JNI invocations to
the PAPI C library [24]). The wrappers support concurrent opera-
tions via lock-free datastructures and discount recursive calls (e.g.,
calls from addAll to this.add). This instrumentation gives us two
of the four feature categories used in Brainy, excluding the memory
size and cost categories. We do not use the memory size feature,
since Java’s generic collections use boxed element representations.
Our minimally invasive instrumentation strategy makes it challeng-
ing to obtain cost features. Instead, we aggregate cycle counts for
four families of operations (insertions, deletions, iterations, look-
ups) as proxy metrics. When tracing the target program, we average
features over two replications of ten runs, and discard data for the
first three iterations. To measure running time and hardware per-
formance counters needed to train our models, we followed best
practices in using the Java Microbenchmarking Harness (JMH) [6].

4.4 Benchmarking and Model Training
To keep a balanced training set, Brainy rejects new benchmarks if
they do not add new information. If collection� wins for benchmark
1, but Brainy already has enough benchmarks for which collection
� wins, 1 is rejected. In our case, this process was too slow to be
practical, so we do not reject benchmarks (Section 7). We therefore
explored a fixed number of 1000 seeds per ADT, and restricted
exploration to datastructure elements of type Integer.

In their original study, Jung et al. used neural networks. We used
random forests with 100 decision trees, which were as effective as
neural networks at classification, while making it easy to measure
the importance of each feature.

4.5 Allocation Site Selection
In their original study, Jung et al. manually selected an interesting
allocation site for evaluating Brainy. However, typical Java pro-
grams often have hundreds of relevant allocation sites, which sites
should be picked? To use a systematic, reproducible approach, we
selected the ones we expected to be most significant for overall per-
formance. We selected the 10 “busiest” allocation sites. To measure
busyness, we instrumented our benchmarks to count the number of
operations on each datastructure (including constructor calls), and
summarized those per allocation site, counting only the ADTs that
we are tracking and excluding allocations within the Java Standard
Library.

Figure 2: Cumulative collection operations and constructors
aggregated for the top ten allocation site. For chart, two allo-
cation sites account for more than 99% of the calls

5 EFFECTIVENESS OF BRAINY4J
To address RQ2, we examine how effective Brainy4J is at reducing
the running time of Java programs. We structure this exploration
around the following research questions:
RQ2.1 What are the model characteristics of Brainy4J?
RQ2.2 What are the costs in terms of time for using Brainy4J?
RQ2.3 How effective is Brainy4J compared to the ground truth?

5.1 Experimental Setup
For the experimental setup we need a selection of environments, a
selection of Java benchmarks, a configuration of Brainy4J, and a
ground truth to compare to.

Selection of Environments. As environmental factors, we con-
sidered the Java Virtual Machine and hardware configuration. We
tested with various Java Virtual Machines but observed no signifi-
cant differences.Therefore, all machines used OpenJDK 8.0.292 with
a JVM heap size of 12 GB. To reduce noise in our measurements, we
ran each system with CPU frequency scaling and hyperthreading
disabled. Table 2 summarizes the systems we evaluated on.

Selection of Benchmarks and Allocation Sites. We evalu-
ate the effectiveness of Brainy4J on the default workloads of five
DaCapo [3] benchmarks, selected based on use in prior collection
replacement studies (shown in Table 3). For each benchmark we
considered the ten busiest allocation sites (Section 4.5) for replace-
ment. Figure 2 shows the distribution of datastructure method calls
for the top ten sites for the selected benchmarks. The top ten sites
comprise 64% of all calls for fop, 73.3% for bloat, and > 99.8% for
avrora, lusearch, and chart. We validated this selection mechanism
by collecting the number of CPU cycles spent per allocation site
and observed no substantial difference.

Brainy4JConfiguration. For training, we generated 1000micro-
benchmarks per ADT, with 1000 operations each. For execution
time, we used 3 replications (independent JVM runs), 2 warmup it-
erations lasting 500 ms each, and 5 measurement iterations, lasting
500 ms. Each micro-benchmark taking 5ms to run. To extract hard-
ware features, we ran each micro-benchmark 10 times. We provide
each sample to the classifier. For classification, we used a random
forest with 100 trees. Our training data consisted of 9× 1000 micro-
benchmarks, iterated 10 times, for 90, 000 training samples with
35 features.
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System CPU Cores CPU Freq. Microarch. RAM OS: Ubuntu Kernel: Linux
Sandy Intel i7-3820 4 × 2 3.6–3.8 GHz Sandy Bridge 16 GiB DDR3-1600 18.04.6 LTS 5.4.0
Cypress Intel i7-11700K 8 × 2 3.6–4.9 GHz Cypress Cove 128 GiB DDR4-3200 22.04.01 5.15.0
Zen3 AMD EPYC 7713P 64 × 2 2.0–3.675 GHz Zen 3 512 GiB DDR4-3200 22.04.01 5.15.0

Table 2: Our benchmarking environments.

Benchmarking. We ran 20 in-process iterations of each bench-
mark. For fop, this number was not sufficient to reach steady-state,
so we ran 150 iterations. We replicated this measurement 20 times.
The last 10 runs are used to estimate steady-state performance.

Ground Truth: Greedy Search. To understand how Brainy4J
compares against the “best possible solution” given our search
space, we performed a limit study, i.e., we estimate the maximum
improvement we could hope to obtain.

Since the effort for exploring all possible combinations of re-
placements is exponential in the number of allocation sites (e.g.,
59049 variants for fop just for the top ten allocation sites, each of
which would take several minutes to benchmark), we selected the
top ten allocation sites (sorted after number of calls) and opt for a
‘greedy’ strategy: we optimized each allocation site independently,
and merged the results to produce an “expected best” candidate
(requiring only 21 variants per benchmark). To compare two vari-
ants, we measured the 95% confidence interval of the difference
in running times, in steady-state. We picked the variant for which
the confidence interval shows a significant improvement. If not,
we keep the original collection. This greedy search would yield
the same result as a full exhaustive search (for the top ten allo-
cation sites) if the impact of all datastructure replacements were
independent of each other.

5.2 Results
We present the results structured around the research questions
presented at the beginning of this section.

RQ2.1: Model characteristics Brainy4J. To evaluate our model,
we measured accuracy on 10-fold of cross-validation, while making
sure the test set contains data only about benchmarks which are not
in the training set. The model learns effectively, with an accuracy
of more than 85% for all collections and machines. However, this is
partially explained by an imbalance problem in the training data.
We come back to this issue in Section 7.

RQ2.2: Cost of Brainy4J (time). Brainy4J’s end-to-end opti-
mization time is much shorter than that of greedy search. Once
the classifier is trained, building a variant of a benchmark takes
between 60 and 90 seconds, including tracing, classification, and

Tools
Artemis Coco CollectionSwitch Chameleon

B
en

ch
m

ar
ks avrora x x x

bloat x x x
chart x
fop x x x x

lusearch x x
Table 3: DaCapo benchmarks used in our work, and their use
in prior studies on collection selection.

building the optimized program. Greedy search takes much longer,
since optimizing a program requires building roughly twenty vari-
ants of the program, and running each variant roughly 400 times
(20 replications, 20 iterations until steady-state). As a result, greedy
search takes between one (fop) and 14 hours (avrora) to optimize
one benchmark.

RQ2.3: Effectiveness Brainy4J vs. Greedy Search. Figure 4
show the 95% confidence intervals of average speedup associated
with different changes, as well as the speedup of the optimization by
Brainy4J. We show each variant in three environments: for each of
our three environments (Table 2), for steady-state performance [4].

We denote single-change variants as 〈from〉 → 〈to〉@〈alloc-site〉
to identify the datastructureswe transform from and to. For example,
AL→LL@1 switches an ArrayList to a LinkedList at the first
(highest-ranked) allocation site.

We see that for 3 out of 5 benchmarks, the original program was
well optimized, in that neither Brainy4J nor greedy search managed
to optimize the benchmark significantly. For chart and avrora, we
observed statistically significant changes, but the effects were below
1%. For lusearch, we did not observe any statistically significant
improvement. For fop, greedy search found an optimization which
yielded between 1 and 2% of speedup on Zen3 and Sandy, and
Brainy4J finds it as well. For bloat, greedy search finds one effective
optimization (HM→AM@2) that improves the running time by
approximately 20% in steady-state by changing a HashMap to an
ArrayMap. However, Brainy4J did not suggest this optimization, it
either suggests to keep the HashMap, or suggests to use a TreeMap
instead. Using a TreeMap does not work as the elements stored in
the map are not comparable, so Brainy4J discards that suggestion.

Our plots show the running times of the greedily and Brainy4J-
optimized variants, but these include several changes. To under-
stand the effect of one single change on performance, we took each
change suggested by either greedy search or Brainy4J, and plotted
the running time of a variant making that single change.

Using an ArrayMap is effective for steady-state performance,
but has a detrimental effect on performance at startup, we discuss
this in Section 6.2.

Examining the individually selected transformations (Figure 3),
we find no matches between the suggestions by Brainy4J and sug-
gestions by Greedy search. None of the changes suggested by
Brainy4J has a significant impact on running time. We suspect
that the difference between Brainy4J and Greedy search is due to
our difficulties in generating a balanced training data-set. We come
back to this issue in Section 7.

6 ADAPTABILITY OF BRAINY4J
To address RQ3, we examine how adaptive Brainy4J is to changes
in the environment (CPU, JVM) and the configuration (e.g., adding a
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new collection). We structure this exploration around the following
research questions:
RQ3.1 What is the effect of the CPU on recommendations?
RQ3.2 What is the effect of the JVM on recommendations?
RQ3.3 What is the cost of changing environment?
RQ3.4 What is the cost of changing collections?

6.1 Experimental Setup
Understanding the effect of the CPU and JVM on recommendations
hinges on two aspects: do the recommendations change, and if so,
how does this change impact performance? In our case, we can
look for recommendations in the training data, and in Brainy4J’s
recommendations for the DaCapo benchmarks.

To test if Brainy4J adapts to new CPU architectures, we ran the
experiments from Section 5 on our three benchmarking machines.
If CPU architecture matters, as in the original Brainy study, we
should see different suggestions on different machines, both in the
training data and in suggestions offered by greedy search.

To test if JVM implementation and warmup impacted collection
suggestions, we ran greedy search on our different machines, with
four different JVM implementations. To test if reaching steady state
impacted the effect of changes, we measured the speedup of a
greedy-search optimized variant in both startup and steady-state.

To evaluate the cost of changing environments (e.g. running
Brainy4J on a new machine) and changing collections, we report
on the time we spent performing such tasks.

6.2 Results
We present the results structured around the research questions.

RQ3.1: Effect of the CPU. For our DaCapo benchmarks, we
observe some differences betweenmachines, and see some variation
in greedy search’s suggestions too, but they concern changes that
had little effect on performance.

For Brainy4J, we observe that suggestions are not the same be-
tween different machines, but in practice the changes do not have

@ From Brainy4J M Greedy M
avrora

1 HM → HM S → TM Z
2 LL → AL C → AL Z
2 LL → HAL Z, S → AL Z
3 LL → AL C → AL Z
3 LL → HAL Z,S S, C
5 LL → AL all all
6 HS all → TS Z
7 HM all → AM Z
8 HM → TM S all
9 HM all → AM Z
10 HM → TM S all

bloat
1 AL → LL all
2 HM → AM all
5 HS → FUAS C, S
7 LL → AL C all
7 LL → HAL Z,S → HAL S
8 HS → FUAS C, S
10 HM → AM S

@ From Brainy4J M Greedy M
chart

3 AL all → HAL S
6 AL all → LL S
7 TM → HM C → HM S
8 AL all → LL S
9 TM → HM C all

fop
1 TM → HM C → HM C, S
3 AL all → LL C
4 V all → AL S
5 AL all → LL S
5 AL all → HAL C
7 AL → LL all → LL C
8 AL all → LL S
9 HM → TM S → TM S

lusearch
4 TM → HM C all
5 TM → HM C all
10 HM → TM S all

Figure 3: Transformations used by Brainy4J/greedy search
on different machines (M), with Z=Zen3, C=Cypress, S=Sandy
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Shorthand Collection

AL ArrayList
LL LinkedList
HAL HashArrayList
HM HashMap
TM TreeMap
AM ArrayMap
HS HashSet
TS TreeSet
FUAS ArraySet

Figure 4: Effect of changes for bloat (a) and fop (b). Points de-
note the mean speedup, error bars denote the 95% confidence
intervals. Greedy search finds an important optimization
for bloat, but Brainy4J misses it. For fop, Greedy search and
Brainy4J find a small optimization for Sandy and Zen3 The
table shows the shorthand labels we use for collection names
in our notation for changes.

significant effects. As far as training and classification are con-
cerned, we observed many similarities between different machines.

We compared the suggestions given in Brainy4J’s training data
for Cypress and Sandy, we see that they agree for 93.5% of bench-
marks (n = 9000). This could show that CPU architecture does not
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Figure 5: Importance of different features to the classifier, per machine. BR_MSP_rate is not available on Zen3.

startup steady interface proportion

ArrayList ArrayList List 99.4
ArrayList HashArrayList List 0.6
HashMap HashMap Map 94.3
HashMap TreeMap Map 5.1
HashMap ArrayMap Map 0.6
HashSet HashSet Set 79.1
HashSet TreeSet Set 20.8
TreeSet TreeSet Set 0.01
TreeSet ArraySet Set < 0.01

Table 4: Suggestions of best collection for training data, for
all three machines. Startup and in steady state. When the
tables agreed, the proportion is in bold.

matter, but it could also indicate that the architectures of both
machines are quite similar. We compared on machines with two
different CPU architectures: Cypress and Zen3 (one with an Intel
CPU, one with an AMD CPU), and see that they also agree for 95.7%
of benchmarks (n = 9000).

We looked at which features Brainy4J considers important for
classifications, and also observed similarities between machines.
Figure 5 shows the five most important features for classifiers spe-
cialized in each collection (x-axis), for all three machines. It displays
what the classifier will look at when analysing the behavior of the
collection. The color denotes the importance of the feature, as re-
ported by the random forest classifier. On the y axis, BR_MSP refers
to branch mispredictions, while BR_MSP_rate refers to the ratio
of misprediction per branch instructions. Notably, the classifier
for ArrayList does not consider any feature, because the training
data always suggests to keep the ArrayList. Several sets of fea-
tures are important on all three machines. Cycles spent in methods
that insert in the collection (“cycles in insertions” in the figure)
and number of calls to Collection.addAll and the corresponding
Map operation Map.putAll are important. The number of branch
mispredictions is also an important feature, for maps and sets. For
lists, the number of cycles spent in insertions is the most important
feature.

RQ3.2: Effect of the JVM. We report all our results in this paper
for OpenJDK 8.0.292. We validated the results on OpenJDK 18.0.1.1
and 11.0.12, and on GraalVM 22.1.0.r17 (excluding the bloat bench-
mark, which crashes2 on the other JDKs), and observed no signifi-
cant differences: both suggestions and running times are similar.

To study the effect of the JVM, we thus put focus on the impact of
JVM warmup on the choice of collections, we examined (a) training
data and (b) benchmark variants under both hot and cold JVMs.

First, we used Brainy4J’s training data, comparing the suggested
collections when only considering startup running time measure-
ments (cold JVM) against steady-state measurements (hot JVM). We
found that the suggestions agreed in 90% of all micro-benchmarks.
Table 4 shows the suggested data structures and how often each
tuple was suggested by the training data. We see that the sugges-
tions are more diverse after warmup, but in the majority of cases,
the same collection would be suggested both at startup and after
warmup.

Second, we compared the effect of a single collection change, for
startup and steady-state. We find that warmup can significantly
affects different collections differently. For bloat, one collection
change (HM→AM@2) is detrimental at startup but reduces steady-
state run time by around 20%.

We find that all four instances in which we introduced HashAr-
rayLists (two in avrora, one each in bloat and lusearch) are reli-
ably detrimental at startup, but the negative effect vanishes after
warmup. HashArrayList is our only datastructure without lazy
initialization and depends on the Eclipse Collections framework,
through a nontrivial chain of delegation, so that we expect it to
benefit from inlining optimizations more than other datastructures.

RQ3.3: Cost of Changing Environment. Switching to a new
machine or a new JVM does not require an expert to re-write the
performance model, as it might be the case for tools like CoCo and
Chameleon [20, 26]. It is however necessary to re-train the classi-
fiers. Training Brainy4J takes roughly 30-35 hours, for a training
dataset of 9000 benchmarks (1000 seeds, 9 collections). Measuring
the best collection for all benchmarks takes approximately 30 hours,

2We suspect that it fails due to a problem in a custom class loader, likely due to changes
in class loader semantics introduced in Java 9 or later.
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and gathering the features takes between 45 and 90 minutes. Train-
ing the classifier takes a few seconds. Measuring the running time
of benchmarks takes most of the time, because we need to warm
up the JVM before we can measure the running time [4].

RQ3.4: Cost of Changing Collections. If Brainy4J can build a
new model of collection performance, it should be relatively easy
to add new collections to Brainy4J, comparatively to tools like
CoCo, in which an expert would have to modify the performance
model. We found that we need no more than a few hours to add a
new collection to Brainy4J, and have partly automated this process.
Re-running the micro-benchmark suite and training the model is
then fully automatic and takes ≈ 30ℎ for 1000 seeds. Removing a
collection requires removing all training data from benchmarks
that use this collection, and re-training the model which takes a
few seconds.

7 OBSTACLES TO EFFECTIVENESS
To address RQ4, we examine interactions between Java and Brainy
that may be obstacles to effectiveness. We structure this exploration
around the following research questions:

RQ4.1 What is the effect of JIT-compilation?
RQ4.2 How effective is benchmark selection?
RQ4.3 What is the balance of the training data?
RQ4.4 Are our micro-benchmarks too short or too long?
RQ4.5 Is the type of elements important?

RQ4.1: Effect of JIT compilation. A key challenge in adapting
Brainy to Java is the increased distance between application code
and machine. Brainy depends on measuring dynamic program fea-
tures, some of which (hardware performance counters and running
time) can vary with external factors, like machine architecture, but
are also influenced by JIT compilation. The JIT introduces an addi-
tional dimension to our models — how “hot” or “cold” the code that
we are optimizing is — and substantially affects micro-benchmark
evaluation.

First, even if we only focus on “hot” code (which is likely to dom-
inate performance in long-running programs), we need to iterate
the same benchmark many times (3.5B per micro-benchmark). As a
result, benchmark selection becomes prohibitively expensive. We
have experimented with parallel execution but found that even on
highly-parallel multicore systems with hyper-threading disabled,
concurrent micro-benchmarking significantly altered our measure-
ments. For Brainy, measuring a benchmark’s running time was fast,
but obtaining features was slow, for Brainy4J, both benchmarking
and tracing are slow.

Second, we found evidence that our instrumentation interferes
with JIT compilation. With tracing enabled, we observed an over-
head of anywhere between 4% (lusearch on a cold JVM) and 1300%
(fop on a hot JVM, on Zen3).The effect onwarmed-up JVMswas gen-
erally more pronounced. In three cases, the overhead was greater
than 400%, with more than 70% attributable to our general instru-
mentation overhead (JNI + Java, not counting PAPI). We speculate
that these interactions are due to JIT optimizations not triggering.
In almost all other cases, the cost for PAPI calls dominates the
overhead. While we expect that this overhead causes a nontriv-
ial amount of perturbation, we found that hardware performance

counter measurements during benchmark execution remained sta-
ble across multiple runs of the program.

RQ4.2: Effectiveness of Benchmark Selection. Jung et al.
used benchmark selection (Section 3.1) to gather the same amount
of training data for all datastructures, discarding excess “wins” for
datastructures that already reached the preconfigured limit, and
discarding micro-benchmarks where the winner reduced run time
by less than 5% compared to the second-best datastructure. We ran
benchmark selection with three different benchmark generation
schemes: Uniform (choose methods with a uniform distribution),
Brainy (our best-effort approximation of Brainy’s selection scheme,
cf. Section 3.1), and Markov (first learning a Markov chain from
traces on fop, lusearch, and avrora, and using it as generator). For
all generation schemes considered, we observed that ArrayList,
HashMap and HashSet win far more often than the other collec-
tions. This could indicate that some collections dominate others
regardless of context, or that our micro-benchmarks are biased
towards a subset of the collections.

Benchmark selection did not find many benchmarks for which
ArrayMap won, but greedy search chose ArrayMap as effective
replacement twice, for bloat, including (HM→AM@2), the overall
most impactful replacement. We suspect that benchmark selection
is biased against ArrayMap, since ArrayMap works well on small
maps, which we rarely create with a fixed length of 1000 method
calls.

We found no synthetic benchmarks for which LinkedList won.
This could suggest LinkedList is intrinsically inefficient, but Artemis
[1] found 87 cases where LinkedList was more effective than Ar-
rayList, and reports AL → LL as the most commonly proposed
transformation. We assume that Brainy4J’s benchmarks fail to show
scenarios in which LinkedList shines and conclude that benchmark
selection is ineffective in our setting.

We observe that even if benchmark selection were effective, it
would be inefficient. If the most “unlucky” datastructure averaged
one win per 100 micro-benchmarks (cf. zero wins for LinkedList),
we would need 100k micro-benchmarks on average to observe 1000
wins for that datastructure. At ∼3.5B of CPU time per datastructure
and micro-benchmark, examining three datastructures would use
over 11.5 days of CPU time, yet discard 97% of all measurements.

RQ4.3: Balance of Training Data. Since we found benchmark
selection ineffective in Brainy4J, we do not utilize it for bench-
marking. As a consequence, Brainy4J’s training data is imbalanced:
our training data favors some collections over others (Table 4); for
example, LinkedList does not appear at all. Table 4 shows that
the same datastructure wins for the vast majority on benchmarks:
ArrayList and HashMap win in more than 90% of cases, HashSet
wins in more than 70% of cases. Our micro-benchmarks did not
find a single case in which LinkedList wins on any of our three
machines. We see the synthetic benchmark generation algorithm,
the length of benchmarks, and the elements that we store in the
collections as possible causes.

RQ4.4: Number of Method Calls. We traced how many meth-
ods are called for each collection object in the five selected bench-
marks. Over two million method calls, 98% o objects have less than
10 method calls, 1% 10 and 1000, and around 120 are much longer
(up to more than a million calls). Both short traces and long traces
are interesting for Brainy4J. Some of the sites we selected allocate
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few collections that grow very big (long trace), while others allocate
many collections that stay small (short trace per collection). Over-
all, we observe that the number of collection objects that receive
1000 or more method calls is negligible compared to the number of
objects that receive ten or fewer calls. We note that this difference
may reflect a difference in programming style between the C++
benchmarks that Brainy investigated and the Java benchmarks we
examined.

RQ4.5: Importance of Element Types.When training Brainy4J,
our synthetic benchmarks only store integers in the collections they
benchmark. Since we observed that HashArrayList’s performance
improved with warmup, we suspect that the cost of hashCode and
compare (which might get cheaper with JIT compilation) plays an
important role in the performance of sets and maps.

8 THREATS TO VALIDITY
Internal Validity. Jung et al. used genetic algorithms for feature
selection. We used the features that they reported as being impor-
tant. It is possible that another selection could improve the results
of Brainy4J. The translation of a plan into a micro-benchmark could
introduce overhead with effects on performance. To prevent this,
we generated bytecode for each micro-benchmark. All benchmarks
suffer from tracing: the program runs slower and the benefit from
JIT compilation is smaller. This may have affected the readings
Brainy4J used to make a decision. To make our micro-benchmarks
comparable with their real-world counterparts, we normalized the
hardware features by the total number of cycles, and the software
features (number of calls to methods) by the total number of method
invocations. However, this normalization does not capture the size
of the collection, which showed to be important for Collection-
Switch. Various factors can affect runtime performance when running
benchmarks. To prevent noise from disturbing the measurements,
we disabled frequency scaling and hyperthreading and ran 20 repli-
cations per run. For micro-benchmarking, we relied on JMH. Clas-
sification accuracy depends on the split between training and test
data. We used 10-fold cross validation and reported statistics on
how accuracy varied on different datasets. We also ensured that
samples for the training and test sets never came from the same
micro-benchmarks.

External Validity. We used three different machines and five
benchmarks. Still, adding more machines and benchmarks would
help to further generalize the results.

9 DISCUSSION
Here, we look back at our three research questions:

What are the technical challenges in porting the Brainy
approach to Java? (RQ1) In porting the Brainy approach to Java,
the main technical challenge was tracing collection usage and CPU
behavior during runs without disturbing the measurements. We
needed to generate collection classes that support tracing, and de-
vise a scheme to substitute collection classes by tracing collections
without breaking the program. Despite our precautions we still
observe that tracing has a significant overhead.

How effective is Brainy4J at optimizing Java programs?
(RQ2) Our greedy search found statistically significant improve-
ments for only one of our five benchmarks, driven by one high-
impact replacement. Brainy4J’s complex decision making mecha-
nism failed to pick up the most important of these replacements. We
expect that there is further potential for improvement: Artemis [1],
another static selection tool, found statistically significant improve-
ments (around 5% run time reduction) for both avrora and fop,
though the authors do not report which changes they applied.
Artemis considers three additional (concurrent) ADTs and several
datastructures that we did not explore here, which may account for
the differences. With Chameleon [20], Shacham et al. found even
more dramatic improvements, but their baseline is a modified 2009
version of the J9 JVM, which makes it difficult to compare their
findings to ours. One of their key findings was the importance of
lazy datastructure initialization, which has since been added to all
datastructures we considered, as of OpenJDK 8, with the excep-
tion of HashArrayList. The CoCo [26] and CollectionSwitch [5]
approaches provide collections that can switch implementations
at runtime. CoCo reports improvements on avrora by 11%, bloat
by 4%, fop by 16%, and lusearch by 44%, albeit for Jikes RVM run-
ning on the Intel Nehalem microarchitecture. CollectionSwitch did
not improve avrora’s nor fop’s running time, but improved bloat’s
running time by 22%, and lusearch’s by 15%. Both CoCo and Collec-
tionSwitch improved lusearch’s running time by switching some
instances of HashMap to ArrayMap, reducing memory usage for
small maps. Our greedy search confirmed one such optimization
for bloat, but similar changes to lusearch did not have the same
effect. We speculate that the difference may come from the tools’
dynamic nature, or from a different selection of allocation sites.

Howadaptive is the Brainy approachwhen applied to Java?
(RQ3) Brainy4J can adapt to new CPU architectures and different
JVMs without manual work. However, we were unable to identify
cases in which switching architectures or JVMs affected the optimal
decisions of our greedy search in a statistically significant way.
By contrast, Brainy reported different optimizations for different
architectures in their C++ benchmarks.

For adapting Brainy4J’s selection of datastructures, we found that
adding new datastructure takes at most a few hours of work to im-
plement adapter subclasses and default operations (Section 4.2). We
have partly automated this process but expect that more automation
is feasible.

We expect that Brainy4J could be effective at adapting to hot vs.
cold JVM usage, using a separate model for the latter case. We did
not explore this direction but note that it may be significant for
Java programs with short run times: the most effective optimization
we observed (in bloat) was ineffective on cold JVMs, even incurring
a significant slowdown on one machine.

What obstacles impair the effectiveness of the Brainy ap-
proach in Java? (RQ4)We found two challenges in adapting Brainy
to Java: the composition of the synthetic benchmarks, and the role of
JIT compilation in the JVM. From what we see in our investigations
(Section 7), the generated synthetic benchmarks struggle to exercise
the strengths of some of our data-structures, like LinkedList. We
have identified several possible causes for this challenge: the size
of the synthetic benchmarks, how we generate plans and method
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arguments, and our selection of elements to store in the datastruc-
tures. Brainy4J generated benchmarks with 1000 method calls, but
we observed that real-world collection traces varied a lot in size.
Brainy4J only stores integers in collections, and does not model
the cost of methods like hashCode, equals or compareTo, though
the cost of these methods may be crucial for deciding which col-
lection to select. Lastly, we observed that JIT compilation plays a
significant role in the effectiveness of collection changes, and found
indications that Brainy4J’s tracing instrumentation interferes with
JIT optimization.

10 CONCLUSIONS
We were unable to find evidence that Brainy is effective when ap-
plied to Java. We observe two challenges caused by JIT compilation
that reduce the effectiveness of the approach: First, the cost for
benchmarking is higher than for C++, which prevented us from
using benchmark selection, since it became too expensive to be
practical. To adapt the Brainy approach to Java would require a
different approach to generate the set of synthetic benchmarks. A
better approach could be not to discard benchmarks (since bench-
marking is expensive), and instead use the results. For example, by
using regression to estimate the cost of running a benchmark.

Second, we suspect that Java JIT compilation is more sensitive
to instrumentation than static compilation, especially since we
must rely on JNI calls for gathering hardware performance counter
data. This would reduce the accuracy of our models for reasoning
about the performance of uninstrumented data structures when
the JVM is hot. In summary, Brainy4J was not as effective as greedy
search, and was less effective than dynamic tools, such as CoCo
and CollectionSwitch.

Future Work. To make Brainy4J more effective, a possible ap-
proach would be to obtain more information from fewer benchmark
runs. Currently, the benchmark generator does not use any feed-
back to build new benchmarks. For example, if it found a benchmark
where LinkedList is very fast, it would not use this information to
find other such benchmarks. One possible direction for future work
would be to allow the benchmark generator to take inspiration
from existing benchmarks to build new ones. In addition, our col-
lections only contained integers, while hash maps and tree-based
maps make heavy use of methods of elements, like compare and
hashCode. One possible extension of this work would be to test
different types of data for the elements stored in the collections,
and the relationship between the cost of hashCode and compare
on these elements. Finally, we do not know how tracing interacts
with JIT-compilation and this could also be explored further.
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